
Mathematics of inequality: in social sciences,

economy and more

Gheorghită Zbăganu
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1 What means ”better”? What means ”the best”?

Comparing the uncomparable

1.1 Partial orders: leader property

Let Ω be a population composed of individuals having the same characteristics.
We can compare them according to several numeric criteria: wealth, height,
income,schooling, health, age, notoriety,etc. Thus any individual ”i” may be
characterized by a vector Zi with d components, where d is the number o mea-
sured characteristics.

Thus the individuals can be compared among themselves on each compo-
nent. The tentation of making tops is licit at unidimensional level. But in
multidimensional case, the order relation is not total, usually the objects are
not comparable. In spite of that, people want to compare them in order to make
a decision. Sometimes it is unavoidable

Suppose that we know the probability distribution of the measured charac-
teristics of the members of the population, each individual characterized by d
characteritics .

In probabilistic terms, it is an idealization, meaning that we know the prob-
ability FZ (B) := P (Z ∈ B) if Z is a member of Ω , considered a d-dimensional
vector and B is a d-dimensional Borel set.

Extract n individuals from the population;namely (Xj)1≤j≤n. We are inter-
ested in questions as:

- Which is the probability that this random set have a maximum? A min-
imum? Both a maximum and a minimum? If we pick a member of the pop-
ulation what is the probability that it is comparable with others? In general
what is the probability that the population contain at least two comparable
members?
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Translate this in mathematical language

Let Zk be a sequence of iid d-dimensional random vectors and let F be their
common distribution.If we shall write only Z we shall understand that Z is a
copy of Zj .

(Of course we could replace ”iid” by something else, but the situation is very
difficult even so)

Warning! The same letter will be used both for distribution probability and
for distribution function: if B ⊂ Rd is a borelian set then F (B) = P (Z ∈ B) ;
if x = (xj)1≤j≤d is a vector from Rd, then F (x) := P (Z ≤ x) or, explicitly,

F (x) := P (Z1 ≤ x1, Z2 ≤ x2, ..., Zd ≤ xd)
F ∗ (x) := P (Z ≥ x)
Let also Φ (x,y) = P (x ≤ Z ≤ y).
Let S = S (F ) = supp(F ) .
Precisely, z ∈ S if and only if P(|Z − z| < ε) > 0 for any ε > 0.Of course

S is closed: if a sequence (zn)n is in S and zn → z then z is in S, too. For
P(|Z − z| < ε) ≥ P

(
|Z − zn| < ε

2

)
if n is great enough.

Warning! In the 2-dimensional case we will prefer the notation Zk =
(Xk, Yk) .

Now F (x, y) means P (Xk ≤ x, Yk ≤ y). In this particular case the marginals
will be denoted by FX and FY : FX (x) = P (Xj ≤ x) , FY (x) = P (Yj ≤ x) .

The main objects of interest:

(0.1) an = P (there exists j ∈ {1, .., n} such that Zi ≤ Zj for all i)

(0.2) bn = P (there exists j ∈ {1, .., n} such that Zi ≥ Zj for all i)

(0.3) cn = P (there exists i, j ∈ {1, .., n} such that Zi ≤ Zk ≤ Zj for all k 6= i, j)
Thus an is the probability that one of these n radom vectors be the greatest

of them, bn is the probability that one of them be the smallest and cn the
probability that the set {Z1, ..., Zn} has both a minimum and a maximum..

Notice that all the probabilities an, bn, cn depend only on de distribution F
of Zj .

Example. Z = (X,X+U), X˜U (0, 10) , U˜U (0, 1)

Definitions
Let a, b, c the inferior limits of these sequences.
If a > 0 we say that F has the leader property, or, by abuse, that the

sequence Z has the leader property.
If b > 0, F (or Z) has the min property
If c > 0, F (or Z) has the order property

Obvious facts
(0.4) cn ≤ min (an, bn)

(0.5) If Z has the leader property, then f (Z) has again the leader

property for any increasing f : Rd → Rd and the same holds for the other two
properties
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Remark. Here ”increasing” means a nondecreasing mapping having
the property that f (z) ≤ f (z′) ⇐⇒ z ≤ z′.Typical examples of increasing
mappings are f (z) = (fj (zj))1≤j≤d with fj : Ij → R increasing. Example:

For d = 2 the mappings f (x, y) = (− ln (1− x) ,− ln (1− y)) or f (x, y) =(
1

1−x ,
1

1−y

)
are increasing.

(0.6) The probabilities an, bn, cn remain the same if we replace the se-
quence (Zn)n with ζn = (f (Zn))n with f increasing.

(0.7) If Z has a leader and φ : Rd → Rd is increasing then φ (Z) has a
leader, too. Moreover, if Z has a leader and φ is decreasing, then φ (Z) has the
min property.

Definition 2. A set S has a leader if it contains an increasing sequence of
points (zn)n such that S ≤ limn zn. Clearly that if S is compact then S has a
leader if there exists a point z0 ∈ S such that S ≤ z0. This leader z0 is unique.
The set has a weak leader z∗if there exists no z ∈ S such that z∗ < z. In
the same way S has a minimum if if it contains a decreasing sequence of points
(zn)n such that limn zn ≤ S.

Fact : If S is compact then S has no leader if and only if it has at least two
weak leaders. Indeed, as S is compact then S ⊂ S1 × S2 where Sj = projj (S)
are compact sets. Let bj = supSj . The sections C1 = {y : (b1, y) ∈ S} , C2 =
{x : (x, b2) ∈ S} are compact and z∗ = (b1, supC1) and z∗∗ = (supC2, b2) are
two weak leaders. They are different, since if z∗ = z∗∗ then S would have a
leader, which we denied.

Examples.
0. S = {(2, 0) , (1, 1) , (0, 2)} has no leader. All the points of S are weak

leaders.
1.If F = U (0, 1)⊗Q where Q (x) = U (f (x) , g (x)) where f, g : [0, 1]→ R are

measurable and f ≤ g.Then S = Supp(F ) = Cl
{

(x, y) ∈ R2 : 0 ≤ x ≤ 1, f (x) ≤ y ≤ g (x)
}
.

Here Cl (A) means the closure of A. If g is nondecreasing then S has the leader
(1, g (1)) and the minimum (0, f (0))

2.If F =Uniform(C) where C ⊂ R2 is a compact set such that 0 < λ2 (C) <
∞.The leader is the point (maxC1,maxC2) provided that it belongs to C.

1.1.1 1. The discrete case

Proposition 1 1.1.

a. If Z is discrete and S = Supp (F ) has a leader then the distribution
F has the leader property, too. In this case lim

n
an = lim

n
bn = lim

n
cn = 1.

Otherwise written, the occurence of a leader is unavoidable.
b. If S has at least two incomparable weak leaders, then Z has no

leader, too.
c. If, moreover, S is compact, then F has the leader(minimum) property

if and only if S has a leader (minimum).
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1.1.2 2. The continuous case

It is much more involved
Suppose that F has the property that F (H) = 0 for any hyperplane from

Rd (for instance if F is absolutely continuous with respect to Lebesgue measure
λd).

FACT
(2.1) an = nP (Zj ≤ Zn∀j ∈ {1, 2, ..., n})
(2.2) bn = nP (Zj ≥ Zn∀j ∈ {1, 2, ..., n})
(2.3) cn = n (n− 1)P (Zi ≤ Zn ≤ Zj ,∀i, j ∈ {1, 2, ..., n})

Computation rules.

1.1.3 Lemma 2.2

Let (Ω,K, P ) be a probability space (E, E)and (H,H)be measurable spaces. Let
Z = (X,Y ) : Ω→ E ×H be a random variable. Suppose that the distribution
of Z is decomposable, meaning that it can be written as

(A) FZ = FX ⊗ FY |X where FX is a probability on (E, E) and the
conditioned distribution FY |X is a transition probability from (E, E) to (H,H)

Let f : E ×H → R be measurable and bounded. Then
(B) E(φ (Z) |X)) =

∫
φ (X, y) dFY |X (y)

In the particular case when X and Y are independent, FZ = FX ⊗FY hence
(C) E(φ (Z) |X)) =

∫
φ (X, y) dFY (y)

Proposition 2.2. If (Zk)k are iid F− distributed, then

(A) P (Zj ≤ Zn∀j ∈ {1, 2, ..., n})=EF (Z)
n−1

holds.
(B) Suppose moreover that F has the property that F (H) = 0 for any

hyperplane from Rd (for instance if F is absolutely continuous with respect to
Lebesgue measure λd). Then

(2.4). an = n
∫
Fn−1dF

(2.5) bn = n
∫

(F ∗)
n−1

dF

(2.6) cn = n (n− 1)
∫ ∫

Φn−2 (x, y) 1{x≤y}dF (y) dF (x)

In the 2-dimensional case: if F = FZ is absolutely continuous and has the

density p then (2.4’) an = n
∫∞
−∞

∫∞
−∞ Fn−1 (x, y) p (x, y) dydx, bn =

n
∫∞
−∞

∫∞
−∞ (F ∗)

n−1
(x, y) p (x, y) dydx..

To compute cn is a difficult task because there are too many integrals

A negative result:
Proposition 2.4. Suppose that (Zn)n is a sequence of iid bounded continuous

random vectors F -distributed and the support of F is the compact S.
If S has no leader then F has no leader, too.
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1.1.4 2.1. The absolutely continuous case

We start with a sufficient condition. To simplify the things,suppose that d = 2,
Zn = (Xn, Yn) and F = FX ⊗ Q where Q is a transition probability from R
to R having the meaning that Q (x,B) = P (Y ∈ B|X = x) or, explicitly, that
Eu (Y |X) =

∫
u (X, y)Q (Y, dy) for any u bounded and measurable. Suppose

that FX is absolutely continuous with respect to Lebesgue measure and let ρ
be its density: dFX (x) = ρ (x) dx.

Let n be fixed. Sort the random variables (Xj)1≤j≤n as X() = ( X(1) ≤
X(2) ≤ ... ≤ X(n)). Let X∗ = X(n), X

∗∗ = X(n−1), X∗ = X(1), X∗∗ = X(2)

The following facts are well known and can be found in any handbook of
order statistics:

α. The density ofX() is p (x1, ..., xn) = n!ρ (x1) ρ (x2) ...ρ (xn) 1{x1≤x2≤...≤xn}
β. The density of (X∗∗, X∗) is p (x, y) = n (n− 1)Fn−2X (x) ρ (x) ρ (y) 1(x,∞) (y)

γ. The density of (X∗, X∗∗) is p (x, y) = n (n− 1)F
n−2
X (y) ρ (x) ρ (y) 1(x,∞) (y)

δ. The density of X∗∗ is p (y) = n (n− 1)F
n−2
X (y)FX (y) ρ (y)

ε. The density of X∗∗ is p (x) = n (n− 1)Fn−2X (x)FX (x) ρ (x)

Lemma 2.5

A. P(X∗ −X∗∗ > t) = EFX(X∗∗+t)

FX(X∗∗)
= n (n− 1)

∫∞
−∞ FX (x+ t)Fn−2X (x) ρ (x) dx

B. P(X∗∗ −X∗ > t) =EFX(X∗∗−t)
FX(X∗∗)

= n (n− 1)
∫∞
−∞ FX (y − t)Fn−2X (y) ρ (y) dy

As a consequence , if X is not bounded above (meaning that FX (t) > 0
for any real t),then P(X∗ −X∗∗ > t) > 0 for any t and if it is not bounded
below (meaning that FX (t) > 0 for any t), then P(X∗∗ −X∗ > t) > 0 for
any t. Thus, if X is unbounded both below and above, P

(
X(2) −X(1) > t

)
and

P
(
X(n) −X(n−1) > t

)
are positive for all t.

A result for non-negative random variables.
If they are thought as waiting times, a useful tool is the concept of hazard

rate, also known as failure rate.
Definition. Let X > 0 be absolutely continuous, FX = 1 − F (x) be its tail

and ρ its density. The quantity λX = ρ

FX
is called the hazard rate of X (or

of FX). Then FX (x) = e−
∫ x
0
λX(u)du. If λX is non-decreasing one says that X

is of type IFR (Increasing Failure rate) and if it is non-increasing X is of type
DFR (Decreasing Failure Rate). Usually one and writes X ∈ IFR in the first
case and X ∈ DFR in the second one. (A better notation would be, of course,
FX ∈ IFR/DFR but this is the tradition) . Of course X ∈ IFR ∩ DFR
means that X is exponentially distributed. It is easy to see that the mapping
x 7−→ tpx is non-increasing in the IFR case and non-decreasing in the DFR case.
Moreover, all the random variables of type DFR are not bounded above.
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Proposition 2.6 Let Zn = (Xn, Yn) be non-negative iid random vectors hav-
ing the distribution F = FX ⊗Q. Suppose that

(i). Q (x, [x−m,x+M ]) = 1 for some nonnegative m,M for all x ≥ 0
and

(ii). supt∈Supp(FX) λX (t) = λ0 <∞
Then a = lim an ≥ e−(M+m)λ0 > 0 hence F has the leader property.
As a particular case, ifX ∈ DFR then λ0 = λX (0) > 0 thus a ≥ e−(M+m)λ(0)

Remark. Usually one writes ”(Y |X) ⊂ [X −m,X +M ] a.s.” instead
of (i).

The result can be extended to random variables which are unbounded both
above and below.

Corollary 2.7 If both X+ and X− are DFR then F has both the leader
property and the min property.

OPEN QUESTION. We were not able to answer the question: If F
has both the leader property and the min property is it true or not that F has
the order property? We believe that the answer should be affirmative.

Example 2.8. Exponential versus uniform Z= (X,Y ) , X˜Exp (1) , X +

U,U˜Uniform (0, 1) , X independent on U . Zn are independent copies of Z.
Then X is DFR, X ≤ Y ≤ X + 1 and, according to Proposition 2.6 with
m = 0,M = 1 we see that a ≥ e−1 = 0.367 88.

As the density of Z is p (x, y) = e−x1(x,x+1) (y) , the exact limit is

a = limn

∫∞
0
e−x

∫ 1

x
nFn−1 (x, y) dydx with

F (x, y) = 1− e−(y−1)+ +
(
x− (y − 1)+

)
e−x

At this stage we do not know if a is computable or not. Computer
simulations suggest that a is much greater: it seems that a ≥ 0.8

In this very case we can transform the random vector Z into a bounded
one having the same ordering property. Let φ = F−1X . In our case φ (x) =
− ln (1− x) . The vector ζ = (FX (X) , FX (Y )) := (ξ, η) has the support in

[0, 1]
2

and its density is
π (s, t) = 1

1−t1{s<t<1− 1−s
e }. Notice that the density of ξ is standard uniform

and that π is unbounded.
It is easy to prove that the density of Z = (FX (X) , FX (Y )) is unbounded

if X ∈ DFR.
One may ask if in the bounded case - when Supp (F ) is compact - is it

necessary that the density of Z be unbounded. The answer is NO.
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Example 2.9. Uniform in Aα = {(x, y) : 0 ≤ x ≤ 1, f (x) ≤ y ≤ g (x)} , f, g

increasing 1. f (x) = x, g (x) = mx+n,m+n = 1 : F has the leader property
if and only if m < 1.

2. f (x) = x, g (x) = 1+x2

2 : F has STRONG leader property: a = 1 !

3. CONJECTURE. If g′ (1) = f ′ (1) , f (1) = g (1) then a = 1

Fig 2. Black: case m = .75 . Red: g (x) = 1+x2

2

Example 2.10. Mixture of small uniforms. Compare the proba-
bilitic method and the analytic one Let 0 = α0 < α1 < ... < αn < ...
and 0 = β0 < β1 < ... < βn < ... be such limαn = lim bn = 1.Let (pj)j≥1 be
a distribution probability on the set of positive integers such that pj > 0 for
all j.Let Ik = (αk−1, αk) , Jk = (βk−1, βk) , k ≥ 1 and finally, let Z = (X,Y )
be a random vector with the distribution F =∞k=1 pkUniform(Ik × Jk) =∞k=1

pkUniform(Ik)⊗Uniform(Jk) Fig 3. The set A is a union of
squares

Its density is
p =∞k=1

pk
(αk−αk−1)(βk−βk−1)

1Ik×Jk and the marginal densities are

pX =∞k=1
pk

(αk−αk−1)
1Ik

pY =∞k=1
pk

(βk−βk−1)
1Jk

Bound given by Proposition 2.6 : a ≥ exp
(
− supk≥1

pk
pk+1+.pk+2+...

)
If supk≥1

pk
pk+1+.pk+2+...

<∞ (or, which is the same, if infk≥1
pk+1+.pk+2+...

pk
>

0) then Z has the leader property.
Analytic approach : estimate a = limEnFn−1 (ζ) using brute force:

EnFn−1 (ζ) =∞k=1

∫ 1

0

∫ 1

0
n (p1 + ...+ pk + pk+1st)

n−1
pkdtds

≥∞k=1 n (p1 + ...+ pk)
n−1

pk ≥ infk≥1
pk+1

pk

Conclusion
a ≥max

(
exp

(
− supk≥1

pk
pk+1+.pk+2+...

)
, infk≥1

pk+1

pk

)
For the last inequality we have used the following elementary result:

Lemma 2.11 Let 0 = α0 < α1 < α2 < .... be an increasing sequence such
that limαk = 1. Let pk = αk − αk−1, k ≥ 1 and ε = infk≥2

pk
pk−1

Then
∞∑
k=1

(αk − αk−1)nαn−1k−1 ≥ ε

Now we have a clue to decide if Z has a leader: if Y −X is bounded and X
is unbounded. But what can we say if Y −X is unbounded, too?

One is obliged to use the brute force.
A result that may help
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Lemma 2.12.
1. Let f : [0, 1]→ [0,∞) be continuous at x = 1. Then lim

n
n
∫ 1

0
xn−1f (x) dx =

f (1)
2. Let G : [0, 1]→ [0, 1] be increasing and differentiable such that G (1) = 1

and let f as above.

Then lim
n
n
∫ 1

0
Gn−1 (x) f (x) dx = f(1)

G′(1)

Here are two cases when this Lemma is applied:

Example 2.13. Exponential versus Exponential Suppose thatX˜Exp (1) , U˜Exp (λ) , Y = X + U

Z = (X,Y ) = (X,X + U)

Then

Proposition 2 2.14. Suppose that λ > 1 is a positive integer.Let Fλ be the
distribution of Z,

1. lim inf
n→∞

an (λ) ≥ λ−1
λ hence Fλ has the leader property

2. If λ = 2,liman = ln 2
3. The sequence (an (λ))λ≥2,λ∈N is increasing. Thus λ ≥ 2 =⇒ a (λ) ≥ ln 2
4. If λ = 1 then lim an (λ) = 0 hence F1 has NOT the leader property

QUESTION. WHAT IF λ is not an integer?

If we use the transform x 7−→ 1−e−x we get the vector ζ =
(
1− e−X , 1− e−Y

)
Its density is ρ (s, t) = λ(1−t)λ−1

(1−s)λ and its distribution function for 0 < s <

t < 1 is G (s, t) = s− (1− t)λ (1−s)λ−1−1
λ−1 . We get

Corollary The distributions Fλ on [0, 1]
2

with the densities p∗λ (x, y) ={
λ (1− x)

−λ
(1− y)

λ−1
1{0<x<y<1} if λ > 1

1
1−x1{0≤x≤y≤1} if λ = 1

, λ positive integer

have the leader property for λ ≥ 2 and not for λ = 1

Example 2.15. A puzzling leaderles distribution LetX˜U (0, 1) , U˜U (0, α) , α >
0, Y = X + U,

Z = (X,Y ) = (X,X + U)˜ Uniform (A)
Figure 4 The set A is between the two segments. Here

α = 0.2

an = 1
a

∫ 1

0

∫ x+α
x

n
(
x− (x+α−y)2+−(α−y)

2
+

2α

)n−1
dydx −→

n→∞
0

The proof is not simple. To conclude:
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Proposition 2.17 The distribution F = U (0, 1)⊗Q withQ (x) = U (x, x+ α)
has never the leader property.

Example 2.18. An exact result.Mixture of copulae Fα = αUniform(D)+

βUniform(E) where D is the first diagonal of the unity square and E is the sec-
ond one. Here α+ β = 1, α, β ≥ 0

Or, Fα is a mixture between the monotonic and the antimonotonic copulae.
Its distribution function is

(2.14) F (x, y) = αmin (x, y) + β (x+ y − 1)+
The computations yield

an = nEFn−1 (Z) = αn+2αn−1β
2n + α

1+β

(
1−

(
1−β
2

)n)
hence

(2.15) a = lim an = α
1+β

For α = β = 1
2 , an = 3

22n + 1
3

(
1− 1

22n

)
→ a = 1

3
In the same way
(2.16) b = a = α

1+β

(2.17) c = α2/2

1.2 3. Mixtures of comonotonic distributions

Definition. We say that the random vector Z = (X,Y ) ⊂ [0,∞)2 is comono-
tonic if Y = f (X) for some nondecreasing f. Then the distribution F can
be written as F = FX ⊗ Q where Q (x) = δf(x). Call this type of distribution
”FX − f”. Its support is Graph (f) . Of course the leader is (1, f (1)) .

Example 3.1. F = U ⊗ δf whith U = Uniform (0, 1) , f : [0, 1] → [m,M ]

increasing and continuous is the distribution of the vector Z = (X, f (X)) where
X is uniformly distributed on [0, 1].

Let φ be its pseudo inverse defined as φ (x) = f−1 (x) if x ∈ [m,M ] , φ (x) = 0
if x < m, φ (x) = 1 if x > M.

Then the distribution function of Z is
(3.1) F (x1, x2) = min

(
x1, f

−1 (x2)
)

for xj ∈ [0, 1] .

and the computation rules are Eu (Z) =Eu (X, f (X)) =
∫ 1

0
u (x, f (x)) dx

thus
a. Eu (Z) =

∫
udF =

∫ 1

0
u (x, f (x)) dx if u : [0, 1] × R → R is bounded

and measurable
b. Ev (Z1, Z2) =

∫
vdF 2 =

∫ 1

0

∫ 1

0
v (x, f (x) , y, f (y)) dydx if v : ([0, 1]× R)

2 →
R is bounded and measurable and Zj are iid F − f distributed

In this is the trivial case it is obvious that
(3.2) an = bn = cn = 1
Recall that we have denoted Φ (x, y) = P (x ≤ Z ≤ y)
In this trivial case
Φ (x, y) = P (x1 ≤ X ≤ y1, φ (x2) ≤ X ≤ φ (y2)) = (max (x1, φ (x2)) ≤ X ≤ min (y1, φ (y2)))
Thus
(3.3) Φ (x, y) = (min (y1, φ (y2))−max (x1, φ (x2)))+
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As Φ (x, f (x) , y, f (y)) = (min (y, φ(f ((y)))−max (x, φ (f (x))))+ = (y − x)+
we get according to b.

(3.4) cn = n (n− 1)
∫ 1

0

∫ 1

0
(y − x)

n−2
+ dydx = n (n− 1)

∫ 1

0

∫ 1−x
0

tn−2dtdx =
1

Next case is
Example 3.2. Mixture of comonotonic distributions. Let p, q ∈

[0, 1] , p+ q = 1
F = pF1 + qF2, F1 = U ⊗ δf , F2 = U ⊗ δg with f, g continuous increas-

ing and U the standard uniform. Figure 5. f (x) =
(3x+ 1) /4, g (x) =

(
1 + x2

)
/2

The result is
Proposition *1. Suppose that f and g are continuous and differentiable.

a =

{
q if f (1) < g (1)
q + p

p+q
f′(1)
g′(1)

if f (1) = g (1) . Notice that a = 1 if f (1) = g (1)

and f ′ (1) = g′ (1)

b =

{
p if f (1) < g (1)
p+ q

q+p
g′(0)
f′(0)

if f (1) = g (1) .Notice that b = 1 if f (0) = g (0) and

f ′ (0) = g′ (0)
To find c is a challenge. All we know is
p2

2 +pq < c <min
(
p, q+ p

p+2q

)
Generalization for N functions Proposition 2.4.
LetN ≥ 2, (Fi = ρi · λ)1≤i≤N be probability distributions on [0, 1] , (pj)1≤j≤N

be a probability distribution on {1, ..., N} . Suppose that ρi, pi > 0. Let fi :
[0, 1]→ [0,∞) be increasing and differentiable, gi = f−1i .Let also αi = fi (1) .Thus
gi (αi) = 1

Suppose that there exists ε > 0 and 1 ≤ k ≤ N such that
(
fi|[1−ε,1]

)
1≤i≤N

is a

non-decreasing finite sequence of functions and, moreover, that
(
gi|[1−ε,1]

)
1≤i≤N

is non-increasing and
α1 ≤ ... ≤ αk < αk+1 = αk+2 = ... = αN = 1

Finally, let F =
N∑
j=1

pjFj ⊗ δfj
Then

(2.8) limn an =
N∑

i=k+1

piρi(1)
i∑
j=1

pjρj(1)+
N∑

j=i+1
pjρj(gj(αi))g′j(αi)f

′
i(1)
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