ON ORDER CONTINUOUS BANACH C(K)-MODULES

Omer GOK

Yildiz Technical University, Faculty of Arts and Sciences, Mathematics Department,Davutpasa Istanbul - 34210, TURKEY e-mail:gok@yildiz.edu.tr

Abstract

Let X be a Banach space and let X' be the norm dual of X. C(K) denotes the Banach space of all continuous real or complex valued functions on a compact Hausdorff space K with the supremum norm. Suppose that X is a Banach C(K)-module. In this paper, we characterize the order continuity of Banach C(K)-module if dual Banach space X' does not contain the space ℓ^{∞} of all bounded sequences by using Arens multiplication..

Math. Subject Classification:46H25, 46B42, 47B60

Key Words and Phrases: Banach lattices, Arens multiplication,order continuous norm, cyclic vector, center of Banach lattices

1 Introduction

Lozanovsky's a study in [8] is that a Dedekind complete Banach lattice has order continuous norm if and only if it does not contain a copy of ℓ^{∞} . A. Kitover et al [6] investigate in a paper that firstly what is an analogue of Dedekind completeness for Banach C(K)modules and secondly what should be considered as an analogue of order continuity for Banach C(K)-modules,[10]. The positive answer to the question in the first case is provided by the wellknown notion of Kaplansky module by Kitover et al [6].Positive answer to the second assertion is given by again Kitover et al [6].

In this paper, we present the dual versions of these solutions. Namely, we take dual Banach C(K)- modules instead of Banach C(K)-modules.

For unexplained notion and terminology in this paper we refer to the books [1] and [7], [9].

Definition 1. [1] Let X be a Banach space and let C(K) be the Banach space of all real or complex valued continuous functions on a compact Hausdorff space K. A bilinear mapping $b: C(K) \times X \to X$ is called a Banach C(K)-module if the following conditions are satisfied:

i.a.(b.x) = (a.b).x for all $a, b \in C(K)$ and $x \in X$,

ii. $1 \cdot x = x$ for all $x \in X$, where 1 is the constant one function,

iii. The mapping b is continuous, i.e., the inequality

$$||a.x|| \le ||a|| ||x||$$

holds for every $a \in C(K)$ and $x \in X$.

We can extend the bilinear mapping b to dual spaces X' and X'' by using Arens multiplication, [2].

$$b': X' \times X \to C(K)'$$

is defined by b'(x', x)(a) = x'(b(a, x)).

$$b'': C(K)'' \times X' \to X'$$

is defined by $b''(\hat{a}, x')(x) = \hat{a}(b'(x', x)).$

$$b''': C(K)'' \times X'' \to X''$$

is defined by $b'''(\hat{a}, x'')(x') = x''(b''(\hat{a}, x')).$

In these mappings , if we put X = C(K) , then C(K)'' = C(S) where S is a hyperstonian compact Hausdorff space.Let B be the Boolean algebra of all idempotents in C(S). By bilinear mapping b defines a continuous map $m : C(K) \to L(X)$ defined by m(a)x = a.x = b(a, x). Also, bilinear mapping b'' defines a continuous mapping $m^* : C(K)'' \to L(X')$ defined by $m^*(a)x' = a.x'$.

The properties of mappings m and m^* are given by the following Theorem.

Theorem 2. Let X be a Banach C(K)-module and let $m : C(K) \to L(X)$ be a continuous mapping from C(K) to the space L(X) of all bounded linear operators from X into X. Then, the following claims are true:

i. m is an algebra homomorphism.

ii. The mapping m^* satisfies: $m^*(a) = (m(a))^*$ for all $a \in C(K)$, where $(m(a))^*$ is the adjoint of m(a).

iii. m(1) = I, where I denotes the identity operator.

iv. m^* is continuous from C(K)'' into L(X') defined by $m^*(a)(x') = a.x'$.

v. X' is a Banach C(K)''-module.

vi. X'' is a Banach C(K)''-module.

vii. m^* is a weak^{*} to weak^{*} continuous mapping from C(K)'' to X'.

viii. m^* is an algebra homomorphism.

Proof. Proofs are done directly by using Arens extension mappings and module.

Let X be a Banach C(K)-module. Then, we can define an equivalent norm on X',

 $||x'||_1 = \sup\{||m^*(a)x'|| : a \in C(S), ||a|| \le 1\}.$

The homomorphism m^* is a contraction with respect to new norm. The $kerm^*$ is a closed ideal in C(S), because of algebra homomorphism m^* . We can replace C(S) by $C(T) \cong C(S)/kerm^*$, where $T = \{t \in S : a(t) = 0 \forall a \in kerm^*\}$. So, we can assume that m^* is one to one.

Theorem 3 (3,4). Let X be a Banach C(K)-module and let $m^*: C(K)'' \to L(X')$ be a contractive homomorphism. Then,

i. If for every $a, b \in C(K)'', |a| \le |b|, then ||m^*(a)x'|| \le ||m^*(b)x'||$ for any $x' \in X'$.

ii. If m^* is one to one, then it is an isometry.

Definition 4 (4,6). Let $m : C(K) \to L(X)$ be a bounded unital algebra homomorphism and let $x \in X$. An idempotent $e_x \in$ B is said to be a carrier projection of x if $m(e_x)x = x$ and $e_x \leq e$ in C(K), whenever $e \in B, m(e)x = x$

Theorem 5 (6). Let X be a Banach C(K)-module and let m^* : $C(K)'' \to L(X')$ be a continuous unital algebra homomorphism. Let $x' \in X'$ and $e_{x'}$ be the carrier projection of x'. Then, for any $a \in C(K)''$ and $m^*(a)x' = 0$ if and only if $ae_{x'} = 0$.

Proof. Let $ae_{x'} = 0$. Then, $m^*(a)x' = m^*(a)m^*(e_{x'})x' = m^*(ae_{x'})x' = 0$.

Assume that for some $e \in B$, $m^*(e)x' = 0$. Then, $m^*((1-e)x') = x'$ and therefore $e_{x'} \leq 1 - e$. So, $ee_{x'} = 0$. Suppose that for some $0 \leq a \in C(K)''$. We have $m^*(a)x' = 0$ and that for some $t \in S, a(t) > 0$. Since S is totally disconnected, there are some $\epsilon > 0$ and $e \in B$ such that e(t) = 1 and $0 \leq \epsilon e \leq a$. From here we get $\epsilon ||m^*(e)x'|| \leq ||m^*(a)x'|| = 0$. Therefore, $ee_{x'} = 0$ and $e_{x'}(t) = 0$ and hence ae = 0.

If $m^*(a)x' = 0$ for some $a \in C(K)''$, then $m^*(|a|)x' = 0$ hence $|a|e_{x'} = 0$ and so $ae_{x'} = 0$

Definition 6 (6). A Banach space C(K) -module X is called a Veksler module if any $x \in X \setminus \{0\}$ has a carrier projection $e_x \in C(K)$.

A compact Hausdorff space K is called quasi-Stonian if it is basically disconnected, that is, the closure of every open G_{δ} set in K is open. It is well-known that the following claims are equivalent:

a. K is quasi-Stonian,

b. C(K) is σ -Dedekind complete,

c. Every non-negative sequence bounded from above in C(K) has a supremum in C(K).

d. Every principal band in C(K) is a projection band.

Definition 7 (6). A Banach C(K)-module X is said to be a Kaplansky module if it satisfies the following conditions:

i. The compact space K is Stonian,

ii. For any $x \in X$ and for any non-negative set $\{a_{\alpha}\}$ bounded above in C(K) the following holds: if $a_{\alpha}x = 0$ for all α , then ax = 0, where $a = sup_{\alpha}a_{\alpha}$.

Theorem 8 (Lozanovsky,5, 6,8). Let E be a σ - Dedekind complete Banach lattice. The following are equivalent:

i. The original lattice norm on E is order continuous.

ii. E does not contain ℓ^{∞} as a closed subspace.

iii. E does not contain ℓ^{∞} as a closed sublattice.

Definition 9 (4,5,6). Let *B* be a Boolean algebra of projections in L(X). *B* is called a Bade-complete Boolean algebra of projections if for any increasing net (e_{α}) in *B* and for every $x \in X$ we have $\lim_{\alpha} ||(e - e_{\alpha})x|| = 0$, where $e = \sup_{\alpha} e_{\alpha}$.

Let B be idempotents in C(K)'' = C(S). B consists of characteristic functions of the clopen subsets of S. And $m^*(B) = B^*$ is a Bade -complete Boolean algebra of projections on X'.

2 The cyclic Banach spaces

In this section we define cyclic Banach space by using Banach C(K)-module.

Definition 10 (1,6). Let X be a Banach C(K)-module and $x \in X$. The cyclic subspace X(x) of X is defined by

$$X(x) = Cl\{m(a)x : a \in C(K)\},\$$

where the notation Cl denotes the closure of a set.

A Banach C(K)-module X is said to be a cyclic Banach space if there is an $x \in X$ such that X = X(x).

Similar definition is given on dual Banach space X'.

Definition 11. The cyclic subspace X'(x') of X' is defined by

$$X'(x') = Cl\{m^*(a)x' : a \in C(S)\},\$$

where the Cl denotes the closure.

The Banach C(S)-module X' is called a cyclic Banach space if there exists a vector $x' \in X'$ such that X' = X'(x').

Let X be a Banach C(K)-module. Then, it defines a unital bounded homomorphism $m : C(K) \to L(X)$. By means of the Arens product, we define a unital bounded homomorphism $m^* :$ $C(K)'' \to L(X')$. Assume $X' = X'(x'_0)$ for some vector $x'_0 \in X'$, that is, X' is a cyclic Banach space and x'_0 is a cyclic vector. Then, the following assertions are true, [6]:

i. X' can be represented as a Banach lattice with quasi-interior point x'_0 .

ii. The cone of X' is identified by the set

$$(X')^+ = Cl\{m^*(a)x': 0 \le a \in C(S)\}.$$

iii. The center Z(X') of the Banach lattice X' is the weak^{*} closure of $m^*(C(S))$.

iv. The unit ball of Z(X') is the closure of unit ball of $m^*(S)$ in the weak^{*} operator topology.

v. If x' is quasi-interior point in the Banach lattice X', then for the order ideal $A_{x'}$ generated by x' we have $A_{x'} = Z(X')x'$.

We give the following theorem concerning cyclic Banach spaces.

Theorem 12. Assume that X' is a cyclic Banach C(S)-module , x'_0 is a cyclic vector in X' and let B be the Boolean algebra of all idempotents in C(S). Then,

 $m^*(C(S))$ is weak* operator closed and X' has an order continuous norm if it is represented as a Banach lattice.

Proof. Since the compact space S is Stonian and B is a Bade complete Boolean algebra of projections on X', the conclusion is true.

Theorem 13 (6). Let X be a Banach C(K)-module and let $m^* : C(K)'' \to L(X')$ be an injective bounded unital algebra homomorphism such that $m^*(C(S))$ is a weak*operator closed in L(X'). The following assertions are equivalent:

i. X' is a Veksler module and no cyclic subspace of X' contains a copy of l^{∞} .

ii. Each cyclic subspace of X' has order continuous norm when it is represented as a Banach lattice.

iii. X' is a Kaplansky module and no cyclic subspace of X' contains a copy of l^{∞} .

Proof. $iii \Rightarrow i$. Every Kaplansky module is a Veksler module.

 $i \Rightarrow iii$. If X' is represented as a Banach lattice with a quasiinterior point x'_0 , then it is σ - Dedekind complete and $m^*(C(S)) = Z(X')$. So, $m^*(C(S))$ is weak* operator closed. Since X' does not contain any copy of ℓ^{∞} , X' has order continuous norm.

 $iii \Rightarrow ii$. Since X' has order continuous norm, X' is Dedekind complete. Hence, it does not contain a copy of ℓ^{∞} .

References

- Yu. A. Abramovich, E. L. Arenson, A. K. Kitover, Banach C(K)-modules and operators preserving disjointness, Pitman Research Notes in Math.Series,277, Longman Scientific and Technical, (1992).
- [2] R. Arens, The adjoint of bilinear operations, Proc. Amer. Math. Soc., 2 (1951), 839-848.
- [3] D. Hadwin, M. Orhon, A noncommutative theory of Bade functionals, *Glasgow Math. J.*, 33, (1991), 75-81.
- [4] D. Hadwin, M. Orhon, Reflexivity and approximate reflexivity for Boolean algebras of projections, J. Funct. Anal., 87, (1989), 348-353.
- [5] A. Kitover, M. Orhon, Reflexivity of Banach C(K)-modules via reflexivity of Banach lattices, *Positivity*, **18**,3, (2014), 475-488.
- [6] A. Kitover, M. Orhon, Dedekind complete and order continuous Banach C(K)-modules, *Positivity and non commutative* analysis, Trends Math.Springer, (2019), 281-294.
- [7] P. Meyer-Nieberg, Banach lattices, Springer, Berlin, (1991).
- [8] G. Ya. Lozanovskii, On isomorhphic Banach structure, Siberian Math. J.10,1,(1969), 64-68.
- [9] H.H. Schaefer, Banach lattices and positive operators, Springer, Berlin, (1974).
- [10] W. Wnuk, Banach lattices with order continuous norm, PWN, Warszawa, (1999).