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1. Outline. State of art in Chua model behavior 

• Nonlinear systems 

• Local behavior 

• Global behavior 

• Chaos and Chua’s Circuit 

• Bifurcation 

• Periodic orbits 

• Strange attractors 
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What is Chaotic System? 
 

• Phenomenon that occurs widely in dynamical systems 

 

• Considered to be complex and no simple analysis 

 

• Study of chaos can be used in real-world applications:   

secure communication, medical field, fractal theory, electrical 
circuits, etc. 
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What is Chua’s Circuit? 
  

• Autonomous circuit consisting two capacitors, inductor, 
resistor, and nonlinear resistor.  

• Exhibits a variety of chaotic phenomena exhibited by more 
complex circuits, which makes it popular. 

• Readily constructed at low cost using standard electronic 
components 
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Nonlinear systems 

 

 

 
• Even for F smooth and bounded for all t є R, the solution  X (t)  

may become unpredictable or unbounded after some finite time t. 

 
• We divide the study of nonlinear systems into local and global 

behavior. 
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Local Behavior 

• Idea: use linear systems theory to study nonlinear systems,     
at least locally, around some special sets, a technique known 
as linearization. 

 

• It is considered: 
• Linearization around equilibrium points.  

 

• Linearization around periodic orbits. 
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Local Behavior (cont.) 

• Linearization around equilibrium points 

 
• Equilibrium point is hyperbolic if no eigenvalues of the Jacobian at 

the equilibrium point has zero real part. 

 

• Hartman-Grobman Theorem: nonlinear system has equivalent 
structure as linearized system, with A=DF(x0), around hyperbolic 
equilibrium points. 
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Local behavior (cont.) 
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Linear system Non-linear system 



Local behavior (cont.) 

• Linearization around periodic orbits 
 

• A periodic solution satisfies 
 
 
 

• Find periodic orbit by solving the BVP 
 
 
• Determine the Jacobian matrix A(t) = DF(δ) 
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Local behavior (cont.) 

• The fundamental matrix of a linear system is the solution of 
 

 
 

• If the periodic orbit has period t, then we define the monodromy matrix  
as      
 
• Stability 

 
• If  |µ|<1, stability 
 
• If |µ|>1, unstability 
 
• If monodromy matrix has exactly one eigenvalue with |µ|=1, then the 

periodic orbit is called hyperbolic 

)(t
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Global Behavior 

• Study is more complex 

• One investigates phenomena such as heteroclinic and homoclinic 
trajectories, bifurcations, and chaos.  

 

• we focus in chaos, but this is closely related to the other         
concepts and phenomena mentioned above.  
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Chaos and Chua’s Circuit 
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Main goal is to give brief introduction to underlying ideas behind the notion of 
chaos, by studying the system that models Chua’s circuit. 

 
Chua’s circuit consists of two capacitors C1, C2, one inductor L, one resistor 
R, and one non-linear resistor (Chua’s diode). 

 



Chua’s Circuit (cont.) 
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If we let X1 = V1, X2 = V2 and X3 = I3,  Chua's circuit is  



Chua’s Circuit (cont.) 
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If we let X1 = V1, X2 = V2 and X3 = I3, the Chua's circuit is  

The Jacobian matrix is 
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Chua’s circuit (cont.) 

• At (0,0,0) we have 

 

 

 

 

• Eigenvalues are 
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Bifurcation 
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Bifurcation diagram starting value α = -1  

 
Plot shows norm of the solution ||x|| versus parameter α. 



Periodic orbits 
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Following Hopf bifurcation, two periodic orbits appear.  The first with period 

 2.2835 (for α =8.19613) and the second with period 19.3835 (for α=11.07941) 

1st periodic orbit 2nd periodic orbit 



Sensitivity to initial data 
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To show that this dynamical system is sensitive to small changes in the data  
(one sign of the presence of chaos), we solve the system again for α=8.196 
(not=8.196013).  However, we obtain a different periodic orbit, which seems to 
“encircle” the previous one.  



Strange attractors 
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Strange attractors (cont.) 
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Strange attractor (cont.) 
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Finally, we compute another strange attractor solution to Chua’s circuit, which is known in 
literature as double-scroll attractor.  This type of  
attractor has been mistaken for experimental noise, but they are now 

commonly found in digital filter and synchronization circuits. 



2. Recent statements  for Chua model 
2.1. Feedback linearization for a dynamical system 

• The term feedback is used to refer to a situation in which two (or more) 
dynamical systems are connected together such that each system 
influences the other and their dynamics are thus strongly coupled. 

 

• Feedback is a powerful idea which is used extensively in natural and 
technological systems. The principle of feedback is simple: base correcting 
actions on the difference between desired and actual performance.  

 

• The use of feedback has often resulted in vast improvements in system 
capability and these improvements have sometimes been revolutionary. 
The reason for this is that feedback has some truly remarkable properties 
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Feedback linearization- two basic properties 

• One of the key uses of feedback is to provide robustness to uncertainty. 
By measuring the difference between the sensed value of a regulated 
signal and its desired value, we can supply a corrective action. 

 

• Another use of feedback is to change the dynamics of a system. Through 
feedback, we can alter the behavior of a system to meet the needs of an 
application: systems that are unstable can be stabilized, systems that are 
sluggish can be made responsive and systems that have drifting 
operating points can be held constant.   
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Feedback linearization-enhanced by control 

• Control theory provides a rich collection of techniques to analyze the 
stability and dynamic response of complex systems and to place bounds 
on the behavior of such systems by analyzing the gains of linear and 
nonlinear operators that describe their components 

 

• A modern controller senses the operation of a system, compares that 
against the desired behavior, computes corrective actions based on a 
model of the system’s response to external inputs and actuates the 
system to effect the desired change. This basic feedback loop of sensing, 
computation and actuation is the central concept in control  
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2.2. Results for Chua model in a slightly 
modified version 

 • A recent aim – to control the Chua dynamical system to  a stable state. The original 
form of the model was taken into account 

 

• (1) 

 

• with α and β the bifurcation parameters. 

• A widely used form for the piece-wise function ℎ(𝑥) is the following 

 

• (2)  
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First case of controlling the Chua model to a stable 
state 

•
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First case of controlling the Chua model to a stable 
state 

• For the system (3) from the (R-H) conditions, the feasible but strong relationships 
between the parameters were obtained: 

• (5)  

 

 

 

• And further 

 

• (6.1)    

 

• Which could be managed !!                                                                         
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Second case of controlling the Chua model to a stable 
state 

• A slightly modified version of the model was taken into account, with a control on 
the third component of the dynamical system 

 

• (7) 

 

 

• The origin is also a equilibrium state in this case, too. 

• Re-taking the same way – with (R-H) criterion, the following relationship between 
the parameters was obtained: 

 

• (6.2) 

 

• Slightly different comparing with (6.1), but feasible too!! 
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3. For the present paper – the cubic version of the 
Chua model  

•
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For the cubic version of the Chua model 

• Two approaches are very recent and challenging:  

• The KCC (Kosambi-Cartan-Chern) theory –the basic idea is that the second order 
differential equations (SODEs) which models the dynamical system and geodesic 
equations in associated Finsler space are topologically equivalent 

 

• The Jacobi stability is a natural generalization of the stability of the geodesic flow 
on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to 
the non-metric setting (based on the deviation curvature tensor) 

• For the cubic Chua model, the Jacobi stability was approached with good results: 

 

• F. Munteanu, A. Ionescu, “Analysing the nonlinear dynamics of a cubic modified 
Chua’s circuit system”,  2021 International Conference on Applied and Theoretical 
Electricity (ICATE), DOI: 10.1109/ICATE49685.2021.9465025  
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https://ieeexplore.ieee.org/xpl/conhome/9464927/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9464927/proceeding
https://doi.org/10.1109/ICATE49685.2021.9465025


Controlling the Chua model to a stable state, in the 
cubic version 

•
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Controlling the Chua model to a stable state, in the 
cubic version 

• Getting the way of R-H criterion, for the zero equilibrium E1 (Jacobean, 
characteristic polynomial)  the following coefficients were obtained for the 3rd 
order polynomial: 

 

• (10)  

 

 

• And thus the conditions (4) become 

 

• (11)  

 

 

• Much more difficult to manage, comparing to rel. (6)   work in progress !! 
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Remarks. Aims 
• Signs of chaos: 

• Sensitivity to initial data 

• Strange attractors 

• Unpredictability 

• If chaos can be understood with elementary knowledge of linear algebra and 
differential equations, it can be better approached and analyzed by control theory              
the above calculus will be enhanced with graphical comparative analysis (work in 
progress !!) 

• The Chua dynamical system can be controlled up to a stable state. In the cubic case, 
managing the calculus is more complex  testing different controls will be useful 

 

• Also considering different options for the function h will be helpful 
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THANKS FOR YOUR 

ATTENTION!   
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