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Introduction

Let X be a topological space and U be an open cover of X .

Two points x , y ∈ X are said to be U -chain connected in X if there
exist U1,U2, . . . ,Un ∈ U such that x ∈ U1, y ∈ Un and
Ui ∩ Ui+1 6= ∅, ∀i ∈ {1, 2, . . . , n − 1}.

If two points x , y ∈ X are U -chain connected in X , for any open
cover U of X , then we say that x and y are chain connected in X .

The relations of U -chain connectedness and chain connectedness are
equivalence relations on X .
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Introduction

Definition (1)

The subset C ⊆ X is said to be chain connected in X if any two
points in C are chain connected in X .

Proposition (2)

X is chain connected in X if and only if X is a connected space.

Proposition (3)

If C ⊆ Y ⊆ X is chain connected in Y , then it is chain connected in
X .

Corollary (4)

Every connected set is chain connected in each of its superspaces.
The converse claim does not hold in general.
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Introduction

Example (5)

Consider C = {(0, 0), (1, 0)} and X = C ∪
⋃

n∈N
(
[0, 1]× 1

n

)
. Then

C is chain connected in X , but not connected.
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Introduction

Theorem (6)

Let C be a chain connected set in X and f : X → Y be a continuous
function. Then f (C ) is a chain connected set in Y .

Corollary (7)

If f : X → Y is a homeomorphism, a set C is chain connected in X if
and only if f (C ) is chain connected in Y .
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Main results

Theorem (8)

If A1,A2, . . . ,An are chain connected sets in X1,X2, . . . ,Xn

respectively, then Πn
i=1Ai is a chain connected set in Πn

i=1Xi .

Proof: We use mathematical induction to prove the theorem. First,
we consider the case when n = 2.

Let AX and AY be chain connected sets in X and Y respectively and
let U be a covering of X × Y . If πX : X × Y → X and
πY : X × Y → Y are canonical projections, then
UX = {πX (U)|U ∈ U} and UY = {πY (U)|U ∈ U} are coverings of X
and Y respectively.
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Main results

Theorem (8)

If A1,A2, . . . ,An are chain connected sets in X1,X2, . . . ,Xn

respectively, then Πn
i=1Ai is a chain connected set in Πn

i=1Xi .

Proof: (continues) Let (x1, y1), (x2, y2) ∈ Ax ×AY . Since AX and AY

are chain connected sets in X and Y respectively, there exist a chain
UX

1 ,U
X
2 , . . . ,U

X
mX

in UX from x1 to x2 and a chain UY
1 ,U

Y
2 , . . . ,U

Y
mY

in UY from y1 to y2. Then UX
1 ×UY

1 ,U
X
1 ×UY

2 , . . . ,U
X
1 ×UY

mY
,UX

2 ×
UY

mY
,UX

3 × UY
mY
, . . . ,UX

mX
× UY

mY
, is a chain in U from (x1, y1) to

(x2, y2). Hence AX × AY is a chain connected set in X × Y .

The same technique is used to prove the general case.
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Main results

Corollary (9)

If X1,X2, . . . ,Xn are connected spaces, then Πn
i=1Xi with the product

topology, is a connected space.

Corollary (10)

If A is a chain connected set in X and B is a connected set, then
A× B is a chain connected set in X × B .

Example (11)

Consider C = {(0, 0), (1, 0)} and X = C ∪
⋃

n∈N
(
[0, 1]× 1

n

)
as in

Example 5. Then C × [0, 1] is a chain connected set in X × [0, 1] but
not connected.
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Conclusion

Theorem 8 proves that the finite Cartesian product of chain
connected sets in respective spaces is a chain connected set in the
product space.

Example 11 shows that the product of chain connected set in a space
with a connected set need not be connected.
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Thank you for the attention!
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