FINITE CARTESIAN PRODUCT OF CHAIN CONNECTED SETS IN TOPOLOGICAL SPACES

Nikita Shekutkovski ¹ Zoran Misajleski ¹ Emin Durmishi ²

¹Ss. Cyril and Methodius University in Skopje

²University of Tetovo

September 17, 2021

Table of Contents

Emin Durmishi (UT)

FINITE CARTESIAN PRODUCT OF CHAIN

September 17, 2021

3 N 3

Let X be a topological space and \mathcal{U} be an open cover of X.

Two points $x, y \in X$ are said to be \mathcal{U} -chain connected in X if there exist $U_1, U_2, \ldots, U_n \in \mathcal{U}$ such that $x \in U_1, y \in U_n$ and $U_i \cap U_{i+1} \neq \emptyset, \forall i \in \{1, 2, \ldots, n-1\}.$

3/12

Let X be a topological space and \mathcal{U} be an open cover of X.

Two points $x, y \in X$ are said to be \mathcal{U} -chain connected in X if there exist $U_1, U_2, \ldots, U_n \in \mathcal{U}$ such that $x \in U_1, y \in U_n$ and $U_i \cap U_{i+1} \neq \emptyset, \forall i \in \{1, 2, \ldots, n-1\}.$

If two points $x, y \in X$ are \mathcal{U} -chain connected in X, for any open cover \mathcal{U} of X, then we say that x and y are chain connected in X.

Let X be a topological space and \mathcal{U} be an open cover of X.

Two points $x, y \in X$ are said to be \mathcal{U} -chain connected in X if there exist $U_1, U_2, \ldots, U_n \in \mathcal{U}$ such that $x \in U_1, y \in U_n$ and $U_i \cap U_{i+1} \neq \emptyset, \forall i \in \{1, 2, \ldots, n-1\}.$

If two points $x, y \in X$ are \mathcal{U} -chain connected in X, for any open cover \mathcal{U} of X, then we say that x and y are chain connected in X.

The relations of \mathcal{U} -chain connectedness and chain connectedness are equivalence relations on X.

Definition (1)

The subset $C \subseteq X$ is said to be chain connected in X if any two points in C are chain connected in X.

Definition (1)

The subset $C \subseteq X$ is said to be chain connected in X if any two points in C are chain connected in X.

Proposition (2)

X is chain connected in X if and only if X is a connected space.

Definition (1)

The subset $C \subseteq X$ is said to be chain connected in X if any two points in C are chain connected in X.

Proposition (2)

X is chain connected in X if and only if X is a connected space.

Proposition (3)

If $C \subseteq Y \subseteq X$ is chain connected in Y, then it is chain connected in X.

Definition (1)

The subset $C \subseteq X$ is said to be chain connected in X if any two points in C are chain connected in X.

Proposition (2)

X is chain connected in X if and only if X is a connected space.

Proposition (3)

If $C \subseteq Y \subseteq X$ is chain connected in Y, then it is chain connected in X.

Corollary (4)

Every connected set is chain connected in each of its superspaces. The converse claim does not hold in general.

Example (5)

Consider $C = \{(0,0), (1,0)\}$ and $X = C \cup \bigcup_{n \in \mathbb{N}} ([0,1] \times \frac{1}{n})$. Then *C* is chain connected in *X*, but not connected.

Example (5)

Consider $C = \{(0,0), (1,0)\}$ and $X = C \cup \bigcup_{n \in \mathbb{N}} ([0,1] \times \frac{1}{n})$. Then *C* is chain connected in *X*, but not connected.

Theorem (6)

Let C be a chain connected set in X and $f : X \to Y$ be a continuous function. Then f(C) is a chain connected set in Y.

Theorem (6)

Let C be a chain connected set in X and $f : X \to Y$ be a continuous function. Then f(C) is a chain connected set in Y.

Corollary (7) If $f : X \to Y$ is a homeomorphism, a set C is chain connected in X if and only if f(C) is chain connected in Y.

Theorem (8)

If A_1, A_2, \ldots, A_n are chain connected sets in X_1, X_2, \ldots, X_n respectively, then $\prod_{i=1}^n A_i$ is a chain connected set in $\prod_{i=1}^n X_i$.

Theorem (8)

If A_1, A_2, \ldots, A_n are chain connected sets in X_1, X_2, \ldots, X_n respectively, then $\prod_{i=1}^n A_i$ is a chain connected set in $\prod_{i=1}^n X_i$.

Proof: We use mathematical induction to prove the theorem.

Theorem (8)

If A_1, A_2, \ldots, A_n are chain connected sets in X_1, X_2, \ldots, X_n respectively, then $\prod_{i=1}^n A_i$ is a chain connected set in $\prod_{i=1}^n X_i$.

Proof: We use mathematical induction to prove the theorem. First, we consider the case when n = 2.

Let A_X and A_Y be chain connected sets in X and Y respectively and let \mathcal{U} be a covering of $X \times Y$. If $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are canonical projections, then $\mathcal{U}_X = \{\pi_X(U) | U \in \mathcal{U}\}$ and $\mathcal{U}_Y = \{\pi_Y(U) | U \in \mathcal{U}\}$ are coverings of Xand Y respectively.

Theorem (8)

If A_1, A_2, \ldots, A_n are chain connected sets in X_1, X_2, \ldots, X_n respectively, then $\prod_{i=1}^n A_i$ is a chain connected set in $\prod_{i=1}^n X_i$.

Proof: (continues) Let $(x_1, y_1), (x_2, y_2) \in A_x \times A_Y$. Since A_X and A_Y are chain connected sets in X and Y respectively, there exist a chain $U_1^X, U_2^X, \ldots, U_{m_X}^X$ in \mathcal{U}_X from x_1 to x_2 and a chain $U_1^Y, U_2^Y, \ldots, U_{m_Y}^Y$ in \mathcal{U}_Y from y_1 to y_2 . Then $U_1^X \times U_1^Y, U_1^X \times U_2^Y, \ldots, U_1^X \times U_{m_Y}^Y, U_2^X \times U_{m_Y}^Y, U_3^X \times U_{m_Y}^Y, \ldots, U_{m_X}^X \times U_{m_Y}^Y$, is a chain in \mathcal{U} from (x_1, y_1) to (x_2, y_2) . Hence $A_X \times A_Y$ is a chain connected set in $X \times Y$.

Theorem (8)

If A_1, A_2, \ldots, A_n are chain connected sets in X_1, X_2, \ldots, X_n respectively, then $\prod_{i=1}^n A_i$ is a chain connected set in $\prod_{i=1}^n X_i$.

Proof: (continues) Let $(x_1, y_1), (x_2, y_2) \in A_x \times A_Y$. Since A_X and A_Y are chain connected sets in X and Y respectively, there exist a chain $U_1^X, U_2^X, \ldots, U_{m_X}^X$ in \mathcal{U}_X from x_1 to x_2 and a chain $U_1^Y, U_2^Y, \ldots, U_{m_Y}^Y$ in \mathcal{U}_Y from y_1 to y_2 . Then $U_1^X \times U_1^Y, U_1^X \times U_2^Y, \ldots, U_1^X \times U_{m_Y}^Y, U_2^X \times U_{m_Y}^Y, U_3^X \times U_{m_Y}^Y, \ldots, U_{m_X}^X \times U_{m_Y}^Y$, is a chain in \mathcal{U} from (x_1, y_1) to (x_2, y_2) . Hence $A_X \times A_Y$ is a chain connected set in $X \times Y$.

The same technique is used to prove the general case.

Corollary (9)

If $X_1, X_2, ..., X_n$ are connected spaces, then $\prod_{i=1}^n X_i$ with the product topology, is a connected space.

Corollary (9)

If $X_1, X_2, ..., X_n$ are connected spaces, then $\prod_{i=1}^n X_i$ with the product topology, is a connected space.

Corollary (10)

If A is a chain connected set in X and B is a connected set, then $A \times B$ is a chain connected set in $X \times B$.

Corollary (9)

If $X_1, X_2, ..., X_n$ are connected spaces, then $\prod_{i=1}^n X_i$ with the product topology, is a connected space.

Corollary (10)

If A is a chain connected set in X and B is a connected set, then $A \times B$ is a chain connected set in $X \times B$.

Example (11)

Consider $C = \{(0,0), (1,0)\}$ and $X = C \cup \bigcup_{n \in \mathbb{N}} ([0,1] \times \frac{1}{n})$ as in Example 5. Then $C \times [0,1]$ is a chain connected set in $X \times [0,1]$ but not connected.

- 本間下 本臣下 本臣下 三臣

Table of Contents

1 Introduction

2 Main results

Emin Durmishi (UT)

FINITE CARTESIAN PRODUCT OF CHAIN

September 17, 2021

→ ∃ →

э

Conclusion

Theorem 8 proves that the finite Cartesian product of chain connected sets in respective spaces is a chain connected set in the product space.

11/12

Conclusion

Theorem 8 proves that the finite Cartesian product of chain connected sets in respective spaces is a chain connected set in the product space.

Example 11 shows that the product of chain connected set in a space with a connected set need not be connected.

11/12

Thank you for the attention!

3 N 3