Homogenization of a Diffusion Problem in Thin Filtering Materials

Renata Bunoiu

University of Lorraine, France

Joint work with dr. Claudia Timofte, University of Bucharest, Romania

1

- Motivation: to obtain homogenization results for a diffusion problem in a thin periodic heterogeneous composite medium $\Omega^{\varepsilon} = \omega \times (0, \varepsilon)$ of small height ε , made up of two materials separated by an imperfect interface.
- The two components of the periodic domain Ω^{ε} , namely Ω_1^{ε} , supposed to be connected, and, respectively, Ω_2^{ε} , assumed to be disconnected, are separated by an imperfect interface Γ^{ε} . Such a structure might be encountered in applications to problems involving filtering materials constituted of three thin horizontal layers of total height ε , as for instance textiles, paper, or biological tissues.
- Main features: the special geometry (small height, periodicity, connectivity), the presence of two materials and the discontinuities of the solution and of its flux across the interface separating the two materials.

The microscopic problem

Let ω be a smooth and bounded domain in \mathbb{R}^2 . The independent variable $x \in \mathbb{R}^3$ is denoted by $x = (x_1, x_2, x_3) = (\bar{x}, x_3)$. We define

$$\Omega^{\varepsilon} = \omega \times (0, \varepsilon) = \{ x = (\bar{x}, x_3) \in \mathbb{R}^3 | \, \bar{x} \in \omega, \, 0 < x_3 < \varepsilon \}.$$

• Goal: to describe the asymptotic behavior, as $\varepsilon \to 0$, of the solution $u^{\varepsilon} = (u_1^{\varepsilon}, u_2^{\varepsilon})$ of the following problem:

$$\begin{cases} -\operatorname{div} \left(A^{\varepsilon} \nabla u_{1}^{\varepsilon}\right) = f \quad \text{in } \Omega_{1}^{\varepsilon}, \\ -\operatorname{div} \left(\varepsilon^{\beta} A^{\varepsilon} \nabla u_{2}^{\varepsilon}\right) = f \quad \text{in } \Omega_{2}^{\varepsilon}, \\ A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot n^{\varepsilon} = \varepsilon h^{\varepsilon} \left(u_{1}^{\varepsilon} - u_{2}^{\varepsilon}\right) - G^{\varepsilon} \quad \text{on } \Gamma^{\varepsilon}, \\ \varepsilon^{\beta} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \cdot n^{\varepsilon} = \varepsilon h^{\varepsilon} \left(u_{1}^{\varepsilon} - u_{2}^{\varepsilon}\right) \quad \text{on } \Gamma^{\varepsilon}, \\ A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot \nu_{\pm}^{\varepsilon} = \varepsilon k_{\pm} \quad \text{on } \Sigma_{\pm}^{\varepsilon,N}, \\ u_{1}^{\varepsilon} = 0 \quad \text{on } \Sigma_{D}^{\varepsilon}. \end{cases}$$

Assumptions

(A1) Let $\lambda, \mu \in \mathbb{R}$, with $0 < \lambda \leq \mu$ and denote by $\mathcal{M}(\lambda, \mu, Y)$ the set of all the matrices $A = (a_{ij}) \in (L^{\infty}(Y))^{3 \times 3}$ such that for any $\xi \in \mathbb{R}^3$, $\lambda |\xi|^2 \leq (A(y)\xi, \xi) \leq \mu |\xi|^2$, a.e. in Y. Let $A \in \mathcal{M}(\lambda, \mu, Y)$ be symmetric and 1-periodic in its first two variables y_1 and y_2 . We put

$$A^{\varepsilon}(x) = A^{\varepsilon}(\bar{x}, x_3) = A\left(\frac{\bar{x}}{\varepsilon}, \frac{x_3}{\varepsilon}\right) = A\left(\frac{x}{\varepsilon}\right)$$
 a.e. in Ω^{ε} .

(A2) The functions $f \in L^2(\omega)$, $k_+ \in L^2(\omega)$ and $k_- \in L^2(\omega)$ are given.

(A3) Let h be a function 1-periodic in the first two variables y_1 and y_2 such that $h \in L^{\infty}(\Gamma)$ and there exists $h_0 \in \mathbb{R}$ with $0 < h_0 < h(y)$ a.e. on Γ . We set

$$h^{\varepsilon}(x) = h\left(\frac{x}{\varepsilon}\right)$$
 a.e. on Γ^{ε} .

(A4) g is 1-periodic in the first two variables y_1 and y_2 and belongs to $L^2(\Gamma)$. We define

$$g^{\varepsilon}(x) = g\left(\frac{x}{\varepsilon}\right)$$
 a.e. on Γ^{ε} .

We take (i) $G^{\varepsilon} = g^{\varepsilon}$ and $\mathcal{M}_{\Gamma}(g) = 0$ OR (ii) $G^{\varepsilon} = \varepsilon g^{\varepsilon}$ and $\mathcal{M}_{\Gamma}(g) \neq 0$.

Previous results

Classical porous media (i.e. not of thin height).

 $G^{\varepsilon} = 0$ (no jump in the flux): J. L. Auriault, H. Ene (1994); H. Ene, D. Polisevski (2002); S. Monsurrò (2003); S. Monsurrò, P. Donato (2004); R.B., D. Polisevski (2004, 2005); C. Timofte (2010, 2013, 2014); P. Donato, K.H. Le Nguyen, R. Tardieu (2011); G. Allaire, Z. Habibi (2013); M. Amar, D. Andreucci, R. Gianni, C. Timofte (2020).

 $G^{\varepsilon} \neq 0$ (jump in the flux): K. Fellner, V. Kovtunenko (2015); R. B., C. Timofte (2016, 2017, 2018, 2019).

Thin porous media (geometry as defined here) and jump in flux.

E. R. Ijioma, A. Muntean, T. Ogawa (2015) (no jump in the solution)

 $\beta = 2$ and $G^{\varepsilon} = g^{\varepsilon}$ or $G^{\varepsilon} = \varepsilon g^{\varepsilon}$; R. B., C. Timofte (2020).

Thin porous media between two layers of fixed height.

M. Neuss-Radu, W. Jäger (2007), M. Gahn, P. Knabner, M. Neuss-Radu (2016); V. Raveendran, E. N.M. Cirillo, I. de Bonis, A. Muntean (2021).

Case $\beta = 0$ and $G^{\varepsilon} = \varepsilon g^{\varepsilon}$.

- variational formulation of the problem and well-posedness
- derivation of *a priori* estimates for the solution of the problem
- compactess results and convergence
- passage to the limit $\varepsilon \to 0$ in the variational formulation and derivation of the limit problem with two scales
- derivation of the homogenized problem and its analysis

The variational formulation

• Consider the Hilbert space $H^{\varepsilon} = V^{\varepsilon} \times H^1(\Omega_2^{\varepsilon})$, with $V^{\varepsilon} = \{v \in H^1(\Omega_1^{\varepsilon}) | v = 0 \text{ on } \Sigma_D^{\varepsilon}\}$, endowed with the norm

$$\|v\|_{H^{\varepsilon}}^{2} = \|\nabla v_{1}\|_{L^{2}(\Omega_{1}^{\varepsilon})}^{2} + \|\nabla v_{2}\|_{L^{2}(\Omega_{2}^{\varepsilon})}^{2} + \varepsilon \|v_{1} - v_{2}\|_{L^{2}(\Gamma^{\varepsilon})}^{2}.$$

• The variational formulation of the problem is : find $u^{\varepsilon} \in H^{\varepsilon}$ s.t.

$$a(u^{\varepsilon}, v) = l(v), \quad \forall v \in H^{\varepsilon},$$

where the bilinear form $a: H^{\varepsilon} \times H^{\varepsilon} \to \mathbb{R}$ and the linear form $l: H^{\varepsilon} \to \mathbb{R}$ are

$$\begin{aligned} a(u,v) &= \int_{\Omega_1^{\varepsilon}} A^{\varepsilon} \nabla u_1 \nabla v_1 \, \mathrm{d}x + \int_{\Omega_2^{\varepsilon}} A^{\varepsilon} \nabla u_2 \nabla v_2 \, \mathrm{d}x + \varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon} (u_1 - u_2) (v_1 - v_2) \, \mathrm{d}\sigma_x, \\ l(v) &= \int_{\Omega_1^{\varepsilon}} f v_1 \, \mathrm{d}x + \int_{\Omega_2^{\varepsilon}} f v_2 \, \mathrm{d}x + \varepsilon \int_{\Gamma^{\varepsilon}} g^{\varepsilon} v_1 \, \mathrm{d}\sigma_x + \\ & \varepsilon \int_{\Sigma_+^{\varepsilon,N}} k_+ v_1 \, \mathrm{d}\sigma_x^+ + \varepsilon \int_{\Sigma_-^{\varepsilon,N}} k_- v_1 \, \mathrm{d}\sigma_x^-. \end{aligned}$$

• Theorem. For any $\varepsilon \in (0, 1)$, the variational problem has a unique solution $u^{\varepsilon} \in H^{\varepsilon}$. Moreover, there exists a constant C > 0, independent of ε , such that

$$\frac{1}{\sqrt{\varepsilon}} \|u_{\alpha}^{\varepsilon}\|_{L^{2}(\Omega_{\alpha}^{\varepsilon})} \leq C, \quad \frac{1}{\sqrt{\varepsilon}} \|\nabla u_{\alpha}^{\varepsilon}\|_{L^{2}(\Omega_{\alpha}^{\varepsilon})} \leq C, \quad \alpha \in \{1, 2\},$$
$$\|u_{1}^{\varepsilon} - u_{2}^{\varepsilon}\|_{L^{2}(\Gamma^{\varepsilon})} \leq C.$$

• Convergence results are derived by the periodic unfolding method adapted to our thin geometry. This method allows us to simultaneously perform homogenization and dimension reduction (see D. Onofrei (2006); M. Neus-Radu, W. Jäger (2007); G. Griso, A. Migunova, J. Orlik (2017); D. Ciorănescu, A. Damlamian, G. Griso (2018)).

We use suitable unfolding operators $\mathcal{T}^{\varepsilon}_{\alpha}$ ($\alpha = 1, 2$), mapping functions defined on the oscillating domains $\Omega^{\varepsilon}_{\alpha}$ into functions defined on the fixed domains $\omega \times Y_{\alpha}$.

• For
$$x \in \mathbb{R}^3$$
, we have $x = \varepsilon \left(\left[\frac{x}{\varepsilon} \right]_Y + \left\{ \frac{x}{\varepsilon} \right\}_Y \right)$. For $x \in \Omega^{\varepsilon}$, we have

$$x = \varepsilon \left(\left[\frac{(\bar{x}, 0)}{\varepsilon} \right]_Y + \left\{ \frac{x}{\varepsilon} \right\}_Y \right).$$

• For any Lebesgue measurable function φ on $\Omega_{\alpha}^{\varepsilon}$, $\alpha \in \{1, 2\}$, we define the periodic unfolding operators by the formula

$$\mathcal{T}_{\alpha}^{\varepsilon}(\varphi)(\bar{x}, y) = \varphi\left(\varepsilon\left[\frac{(\bar{x}, 0)}{\varepsilon}\right]_{Y} + \varepsilon y\right), \quad \text{for a.e. } (\bar{x}, y) \in \omega \times Y_{\alpha}.$$

• For any function φ which is Lebesgue-measurable on Γ^{ε} , the periodic boundary unfolding operator $\mathcal{T}_b^{\varepsilon}$ is defined by

$$\mathcal{T}_b^{\varepsilon}(\varphi)(\bar{x}, y) = \varphi\left(\varepsilon\left[\frac{(\bar{x}, 0)}{\varepsilon}\right]_Y + \varepsilon y\right), \quad \text{for a.e. } (\bar{x}, y) \in \omega \times \Gamma.$$

• We have two different scales: the macroscopic scale \bar{x} , giving the position of a point in the domain ω and the microscopic scale y, which gives the position of a point in Y.

• The function $\mathcal{T}^{\varepsilon}_{\alpha}(\varphi)$ is Lebesgue-measurable on $\omega \times Y_{\alpha}$ (we increased the number of variables). The oscillations of the function φ are put in the variable y (separation of the scales).

$$\lim_{\varepsilon \to 0} \int_{\Omega_{\alpha}^{\varepsilon}} \varphi(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \varepsilon \int_{\omega \times Y_{\alpha}} \mathcal{T}_{\alpha}^{\varepsilon}(\varphi)(\bar{x}, y) \, \mathrm{d}\bar{x} \, \mathrm{d}y.$$

Homogenization results

- Goal: to pass to the limit, with $\varepsilon \to 0$, in the variational formulation.
- Technique: the periodic unfolding method and general compactness results.
- There exist $u_1 \in H_0^1(\omega)$, $u_2 \in L^2(\omega)$, $\widehat{u}_1 \in L^2(\omega, H_{\overline{\text{per}}}^1(Y_1))$, $\widehat{u}_2 \in L^2(\omega, H^1(Y_2))$ with $\mathcal{M}_{\Gamma}(\widehat{u}_1) = 0$, $\mathcal{M}_{\Gamma}(\widehat{u}_2) = 0$ and such that, up to a subsequence, for $\varepsilon \to 0$, we get:

$$\begin{split} \mathcal{T}_{1}^{\varepsilon}(u_{1}^{\varepsilon}) &\rightharpoonup u_{1} \quad \text{weakly in } L^{2}(\omega, H^{1}(Y_{1})), \\ \mathcal{T}_{1}^{\varepsilon}(\nabla_{\bar{x}}u_{1}^{\varepsilon}) &\rightharpoonup \nabla_{\bar{x}} u_{1} + \nabla_{\bar{y}}\widehat{u}_{1} \quad \text{weakly in } L^{2}(\omega \times Y_{1}), \\ \mathcal{T}_{1}^{\varepsilon}(\partial_{x_{3}}u_{1}^{\varepsilon}) &\rightharpoonup \partial_{y_{3}}\widehat{u}_{1} \quad \text{weakly in } L^{2}(\omega \times Y_{1}), \\ \mathcal{T}_{2}^{\varepsilon}(u_{2}^{\varepsilon}) &\rightharpoonup u_{2} \quad \text{weakly in } L^{2}(\omega, H^{1}(Y_{2})), \\ \mathcal{T}_{2}^{\varepsilon}(\nabla u_{2}^{\varepsilon}) &\rightharpoonup \nabla_{y}\widehat{u}_{2} \quad \text{weakly in } L^{2}(\omega \times Y_{2}). \end{split}$$

• Notation: to every $w = w(\bar{x}) \in H^1(\omega)$, whose gradient $\nabla_{\bar{x}} w(\bar{x})$ has two components, we associate the tridimensional vector $\overline{\nabla} w(\bar{x})$ defined by

$$\overline{\nabla}w(\bar{x}) = (\nabla_{\bar{x}}w(\bar{x}), 0).$$

• Theorem. Let $u^{\varepsilon} = (u_1^{\varepsilon}, u_2^{\varepsilon})$ be the unique solution of the variational problem. Then, the limit functions $u_1 \in H_0^1(\omega)$, $u_2 \in L^2(\omega)$, $\widehat{u}_1 \in L^2(\omega, H_{\overline{per}}^1(Y_1))$, and $\widehat{u}_2 \in L^2(\omega, H^1(Y_2))$ are such that $\nabla_{\overline{y}}\widehat{u}_2 = 0$, the pair (u_1, \widehat{u}_1) is the unique solution of the two-scales limit problem

$$\int_{\omega \times Y_1} A(y) (\overline{\nabla} u_1 + \nabla_y \widehat{u}_1) (\overline{\nabla} \varphi + \nabla_y \Phi) \, \mathrm{d}\bar{x} \, \mathrm{d}y = \int_{\omega} f(\bar{x}) \varphi(\bar{x}) \, \mathrm{d}\bar{x} + \int_{\omega} f(\bar{x}) \varphi(\bar{x}) \, \mathrm{d}\bar{x} \, \mathrm{d}y$$

$$|\Gamma|\mathcal{M}_{\Gamma}(g)\int_{\omega}\varphi(\bar{x})\,\mathrm{d}\bar{x} + \int_{\omega}k_{+}(\bar{x})\varphi(\bar{x})\,\mathrm{d}\bar{x} + \int_{\omega}k_{-}(\bar{x})\varphi(\bar{x})\,\mathrm{d}\bar{x},$$

for all $\varphi \in H_0^1(\omega)$ and $\Phi \in L^2(\omega, H_{\overline{per}}^1(Y_1))$, and

$$u_2(\bar{x}) = u_1(\bar{x}) + \frac{|Y_2|}{|\Gamma|\mathcal{M}_{\Gamma}(h)}f(\bar{x}).$$

• Theorem. Let (u_1, \hat{u}_1) be the unique solution of the two-scales limit problem. Then, u_1 satisfies the following homogenized problem

$$\begin{cases} -\operatorname{div}_{\bar{x}} \left(A^{\operatorname{hom}} \nabla_{\bar{x}} u_1(\bar{x}) \right) = f(\bar{x}) + |\Gamma| \mathcal{M}_{\Gamma}(g) + k_+(\bar{x}) + k_-(\bar{x}) & \text{in } \omega, \\ u_1 = 0 & \text{on } \partial \omega \end{cases}$$

and

$$\widehat{u}_1(\bar{x}, y) = -\sum_{j=1}^2 \frac{\partial u_1}{\partial x_j}(\bar{x})\chi_1^j(y) \quad \text{in } \omega \times Y_1.$$

Here, A^{hom} is the constant homogenized 2×2 matrix, defined, for $i, j \in \{1, 2\}$, by

$$A_{ij}^{\text{hom}} = \int_{Y_1} \left(a_{ij} - \sum_{k=1}^3 a_{ik} \frac{\partial \chi_1^j}{\partial y_k} \right) \, \mathrm{d}y.$$

The function $\chi_1 = (\chi_1^1, \chi_1^2) \in (H_{\overline{\text{per}}}^1(Y_1))^2$ is the weak solution of the cell problem (j = 1, 2):

$$\begin{cases} -\operatorname{div}_{y}(A(y)(\nabla_{y}\chi_{1}^{j}-e_{j}))=0 & \text{in } Y_{1}, \\ (A(y)(\nabla_{y}\chi_{1}^{j}-e_{j}))\cdot n=0 & \text{on } \Gamma, \\ (A(y)(\nabla_{y}\chi_{1}^{j}-e_{j}))\cdot \nu_{\pm}=0 & \text{on } \Sigma_{\pm}^{1}, \\ \mathcal{M}_{\Gamma}(\chi_{1}^{j})=0. \end{cases}$$

where *n* denotes the unit outward normal to Y_2 and $\nu_{\pm} = (0, 0, \pm 1)$.

• We remark that the limit problems satisfied by u_1 and u_2 can be written as a coupled system, consisting of a partial differential equation and an algebraic one and which is a modified stationary Barenblatt model:

$$-\operatorname{div}_{\bar{x}} \left(A^{\operatorname{hom}} \nabla_{\bar{x}} u_1(\bar{x}) \right) + |\Gamma| \mathcal{M}_{\Gamma}(h) (u_1 - u_2) = |Y_1| f(\bar{x}) + |\Gamma| \mathcal{M}_{\Gamma}(g) + k_+(\bar{x}) + k_-(\bar{x}) \quad \text{in } \omega,$$
$$-|\Gamma| \mathcal{M}_{\Gamma}(h) (u_1 - u_2) = |Y_2| f(\bar{x}) \quad \text{in } \omega,$$
$$u_1 = 0 \quad \text{on } \partial \omega$$

• The homogenized matrix A^{hom} is only of dimension two, but some information coming from the vertical direction of the microscopic problem is still present in it. The coefficients are influenced by the third local variable y_3 , through the solution χ_1 of the cell problem.

• Conclusions. A diffusion problem in a thin composite material formed by two constituents separated by an imperfect interface was analyzed by using the periodic unfolding method, adapted to thin domains. The limit problem is described by a lower-dimensional modified Barenblatt system.

• At the limit, we obtain a lower-dimensional modified Barenblatt system (in which the dimension reduction phenomenon occurs). The effect of the small height of the domain Ω^{ε} is reflected in the fact that in the limit the diffusion occurs only in the horizontal bi-dimensional domain ω . The derivative with respect to the vertical variable x_3 does not appear in the equation, but, still, the solution of the effective problem keeps track of the local vertical variable y_3 via the values of the constant homogenized coefficients. The influence of the properly scaled flux jump is reflected in the appearance in the right-hand side of the homogenized equation of an additional source term, macroscopically distributed over ω .

THANK YOU FOR YOUR ATTENTION!